

University Paris-Sud Exercice sheet 2 Representation theory

Let $\mathfrak{sl}_2 = \mathbb{C}f \oplus \mathbb{C}h \oplus \mathbb{C}e$ be the 3-dimensional Lie algebra such that

$$[e, f] = -2f, [e, f] = h, [h, e] = 2e.$$

Let V be a \mathfrak{sl}_2 -module. We say that V is a weight module if h acts semisimply (i.e. is diagonalizable) on V . For $\lambda \in \mathbb{C}$, we let V^λ be the eigenspace of h corresponding to λ .

1. Show that the sum $\sum_{\lambda \in \mathbb{C}} V^\lambda$ is direct. If x has weight λ then $e \cdot x$ (resp. $f \cdot x$) has weight $\lambda + 2$ (resp. $\lambda - 2$).
2. Show that \mathfrak{sl}_2 is simple.

We say that a nonzero vector $v \in V$ is maximal of weight $\lambda \in \mathbb{C}$ if $e \cdot v = 0$ and $h \cdot v = \lambda v$.

3. Find a maximal vector of \mathfrak{sl}_2 , what is its weight ?
4. Let $v \in V$ be a primitive element of weight λ . For all $n \in \mathbb{N}$, let $v_n = \frac{f^n \cdot v}{n!}$ and $v_{-1} = 0$. Show that

- $h \cdot v_n = (\lambda - 2n)v_n$
- $f \cdot v_n = (n+1)v_{n+1}$
- $e \cdot v_n = (\lambda - n + 1)v_{n-1}$.

5. Show that only two cases may arise: either the elements (v_n) are linearly independant or the weight λ belongs to \mathbb{N} , the elements v_0, \dots, v_λ are linearly independant and $v_i = 0$ for all $i > \lambda$.

We take the following fact for granted: any finite dimensional \mathfrak{sl}_2 -module is a weight module.

6. Show that every nonzero finite-dimensional \mathfrak{sl}_2 -module V contains a primitive element v of weight $\lambda \in \mathbb{N}$.
7. Show that the vector subspace W of V with basis v_0, \dots, v_λ is stable under \mathfrak{sl}_2 and is irreducible.
8. Classify all finite dimensional simple \mathfrak{sl}_2 -modules.
9. Let \mathfrak{sl}_2 act on the polynomial ring $\mathbb{C}[X, Y]$ by derivations via

$$f \mapsto Y \frac{\partial}{\partial X}, h \mapsto X \frac{\partial}{\partial X} - Y \frac{\partial}{\partial Y}, e \mapsto X \frac{\partial}{\partial Y}.$$

Show that this infinite dimensional representation is completely reducible and describe its irreducible summands.

For $\lambda \in \mathbb{C}$, define $M(\lambda)$ to be a \mathbb{C} -vector space with countable basis $\{v_0, v_1, v_2, \dots\}$.

10. Show that the relations of question 4 make $M(\lambda)$ into a \mathfrak{sl}_2 -module.
11. For what values of λ is $M(\lambda)$ irreducible ? When it is not, is it a direct sum of simple modules ? *Hint : notice that any \mathfrak{sl}_2 -submodule of $M(\lambda)$ is infinite dimensional.*