

University Paris-Sud Exercice sheet 4 Representation theory

We are interested in the four infinite families of classical Lie algebras A_l, B_l, C_l, D_l ($l \geq 1$), these are Lie subalgebras of \mathfrak{gl}_n for $n = l+1, 2l+1, 2l, 2l$ respectively. For $1 \leq i, j \leq n$, denote by $e_{i,j}$ be the corresponding elementary matrix in \mathfrak{gl}_n and $M_{m,n}$ be the vector space of $m \times n$ matrices. Recall that

$$\begin{aligned} [e_{i,j}, e_{k,l}] &= \delta_{j,k}e_{i,l} - \delta_{l,i}e_{k,j}, \\ [e_{i,i}, e_{j,k}] &= (\delta_{i,j} - \delta_{k,i})e_{j,k}. \end{aligned}$$

- Type A_l : the special linear Lie algebra \mathfrak{sl}_{l+1} consisting of trace zero matrices.
- Type B_l : the special orthogonal Lie algebra of odd dimension

$$\mathfrak{so}_{2l+1} = \left\{ \begin{pmatrix} 0 & u & v \\ -t_v & a & b \\ -t_u & c & -t_a \end{pmatrix} \mid u, v \in M_{1,l}, a, b, c \in M_l, {}^t b = -b, {}^t c = -c \right\}.$$

- Type C_l : the symplectic Lie algebra

$$\mathfrak{sp}_{2l} = \left\{ \begin{pmatrix} a & b \\ c & -t_a \end{pmatrix} \mid a, b, c \in M_{l,l}, {}^t b = b, {}^t c = c \right\}.$$

- Type D_l : The special orthogonal Lie algebra of even dimension

$$\mathfrak{so}_{2l} = \left\{ \begin{pmatrix} a & b \\ c & -t_a \end{pmatrix} \mid a, b, c \in M_l, {}^t b = -b, {}^t c = -c \right\}.$$

1. Compute the dimension of the classical Lie algebras.
2. Show that $D_1 \simeq \mathbb{C}$, $A_1 \simeq B_1 \simeq C_1$.
3. (Bonus) Show that $B_2 \simeq C_2$, $A_3 \simeq D_3$. What about D_2 ?
4. Compute the root space decomposition of \mathfrak{sl}_2 and draw the root system of type A_1 .
5. For each of the classical Lie algebras, check that a Cartan subalgebra \mathfrak{h} is given by the subalgebra consisting of diagonal matrices.
6. Compute the dimension of the Cartan subalgebra \mathfrak{h} (also known as the rank) and the number of roots in each case.

Recall that an invariant form is given by the trace.

7. Compute the root space decomposition of \mathfrak{sl}_3 and draw the root system of type A_2 .
8. Compute the root space decomposition of \mathfrak{so}_5 and draw the root system of type B_2 .
9. Compute the fundamental weights for the root system of type A_1 , A_2 and B_2 .