

University Paris-Sud Exercice sheet 5 Representation theory

Let \mathfrak{g} and \mathfrak{g}' be semisimple Lie algebras.

1. Show that as associative algebras

$$\mathcal{U}(\mathfrak{g} \oplus \mathfrak{g}') \simeq \mathcal{U}(\mathfrak{g}) \otimes \mathcal{U}(\mathfrak{g}').$$

2. If V (resp. V') is a finite dimensional \mathfrak{g} -module (resp. \mathfrak{g}' -module), show that the \mathbb{C} -vector space $V \otimes V'$ is naturally a $\mathfrak{g} \oplus \mathfrak{g}'$ -module. We denote this $\mathfrak{g} \oplus \mathfrak{g}'$ -module

$$V \boxtimes V'.$$

3. Show that if V and W are simple, then so is $V \boxtimes W$. *Hint: Use highest weight theory and show that if V is of highest weight λ and W is of highest weight μ then show that $V \boxtimes W$ has a highest weight vector of weight (λ, μ) and conclude.*

From now on we assume that $\mathfrak{g} = \mathfrak{g}'$.

4. Recall why $V \otimes W$ has a natural structure of \mathfrak{g} -module.

Recall that if V is a finite dimensional \mathfrak{g} -module then we define the formal character $\text{ch}(V)$ to be the sum

$$\sum_{\lambda \in P} \dim(V_\lambda) e^\lambda \in \mathbb{Z}[P]$$

where $\mathbb{Z}[P]$ is the free \mathbb{Z} -module with basis given by the elements e^λ labelled by elements of the weight lattice $\lambda \in P$.

5. Compute the character of $V \otimes W$ in term of the characters of V and W .

Assume momentarily that $\mathfrak{g} = \mathfrak{sl}_2$. Let $\lambda \in \mathbb{N}$ and $L(\lambda)$ be the finite dimensional simple module of highest weight λ .

6. Compute $\text{ch}(L(\lambda))$.
7. Let $\lambda, \mu \in \mathbb{N}$. Is the \mathfrak{sl}_2 -module $L_\lambda \otimes L_\mu$ simple ? If not, compute its decomposition as a direct sum of \mathfrak{sl}_2 -modules.
8. Explain how to construct $L(1)$ very explicitly and how to obtain every other finite dimensional simple representation from it.
9. For which values of λ and μ does $L(\lambda) \otimes L(\mu)$ contains the trivial representation ? Try to generalize your result for an arbitrary semisimple Lie algebra.
10. For any semisimple Lie algebra \mathfrak{g} and $\lambda, \mu \in P^+$ show that $L(\lambda + \mu)$ appears as a subrepresentation of $L(\lambda) \otimes L(\mu)$ with multiplicity one.

We now consider the Lie algebra \mathfrak{sl}_3 with Cartan \mathfrak{h} . Let $h_1 = e_{11} - e_{22}$ and $h_2 = e_{22} - e_{33}$ be a basis of \mathfrak{h} and $\omega_1, \omega_2 \in \mathfrak{h}^*$ be the dual basis.

11. Show that ω_1 and ω_2 are the fundamental weights.
12. Show that the standard representation of \mathfrak{sl}_3 on \mathbb{C}^3 equals $L(\omega_1)$.
13. Show that the dual of the standard representation equals $L(\omega_2)$.
14. Explain how to obtain every finite dimensional simple module of \mathfrak{sl}_3 from these two.