

University Paris-Sud Exercice sheet 6 Representation theory

1. (*Warm-up*) Let \mathfrak{g} be a reductive finite-dimensional Lie algebra, is it true that any finite-dimensional representation of \mathfrak{g} is semisimple ?

Let $\mathcal{H} = \bigoplus_{n \in \mathbb{Z}} \mathbb{C}b_n \oplus \mathbb{C}C$ be the Lie algebra with basis $(b_n)_{n \in \mathbb{Z}}$ and C whose structure is given by the fact that C is central and the relation:

$$[b_m, b_n] = m\delta_{m+n,0}C.$$

1. Show that b_0 is central and that the $(b_{\pm n})_{n > 0}$ commute with one another.¹
2. Let M be a simple \mathcal{H} -module, show that b_0 and C must act via scalars.
3. Let M be a finite-dimensional simple \mathcal{H} -module, show that C must act by zero. *Hint: use the fact that the trace of a commutator is zero.*

From now on we assume that C acts by the identity. We say that a \mathcal{H} -module is smooth is for all $m \in M$ there exists $N \in \mathbb{N}$ such that for all $n \geq N$ we have $b_n m = 0$. For all $\lambda \in \mathbb{C}$, define the Fock space \mathcal{F}_λ of highest-weight λ to be the \mathbb{C} -vector space

$$\mathcal{F}_\lambda = \mathbb{C}[(x_{-n})_{n > 0}]|\lambda\rangle$$

where b_0 acts by λ and for all $n > 0$, b_{-n} acts by multiplication by x_{-n} and b_n acts by $n \frac{\partial}{\partial x_{-n}}$.

4. Show that Fock spaces are smooth \mathcal{H} -modules.
5. Show that Fock spaces are simple \mathcal{H} -modules.

Consider \mathcal{C} to be the full subcategory of smooth \mathcal{H} -modules such that b_0 acts semisimply and each $(b_n)_{n > 0}$ acts locally nilpotently.

6. Show that Fock spaces belong to \mathcal{C} .
7. Show that giving a morphism of \mathcal{H} -modules from the Fock space \mathcal{F}_λ to a module M amounts to giving a vector $m \in M$ such that $b_0 m = \lambda m$ and $b_n m = 0$ if $n > 0$.

We want to show that the Fock spaces are the only simple objects in the category \mathcal{C} .

8. Show that any nonzero object of \mathcal{C} contains a Fock space.
9. Deduce that the Fock spaces are the only simple objects of \mathcal{C} .

In fact, the category \mathcal{C} is even semisimple, this is not hard, but a bit long.

¹The operators $(b_{-n})_{n > 0}$ are called the creation operators and the $(b_n)_{n > 0}$ are called the annihilation operators. The terminology will become clearer when we start computing in Fock spaces.